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Asymptotic Theory of the Least Squares
Estimators of Sinusoidal Signal*
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Abstract

The consistency and the asymptotic normality of the least squares estimators are
derived of the sinusoidal model under the assumption of stationary random error. It is
observed that the model does not satisfy the standard sufficient conditions of Jennrich
(1969), Wu (1981) or Kundu (1991). Recently the consistency and the asymptotic
normality are derived for the sinusoidal signal under the assumption of normal error
(Kundu; 1993) and under the assumptions of independent and identically distributed
random variables in Kundu and Mitra (1996). This paper will generalize them. Hannan
(1971) also considered the similar kind of model and establish the result after making
the Fourier transform of the data for one parameter model. We establish the result
without making the Fourier transform of the data. We give an explicit expression of
the asymptotic distribution of the multiparameter case, which is not available in the
literature. Our approach is different from Hannan’s approach. We do some simulations
study to see the small sample properties of the two types of estimators.

Key Words and Phrases: Asymptotic distribution, strong consistency, least squares esti-
mators and stationary distribution.
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1 Introduction

The least squares method plays an important role in drawing the inferences about the pa-
rameters in the nonlinear regression model. In this paper we consider the least squares
estimators (LSE’s) of the following sinusoidal time series regression model:

Y (t) = Apcos(wot) + Bysin(wet) + X(t); t=1,...,N (1)

Here Ay and By are unknown fixed constants, wy is an unknown frequency lying between 0
and 7. X(t)’s are stationary time series satisfying the following assumption:

Assumption 1

X(@) = > a(et-7), Zla )| < o0 (2)
j=-o0 j==00
where €(t)’s are independent and identically distributed (i.i.d.) random variables with mean
zero and finite variance o > 0. Here ‘=" means X(t) has that almost sure representation.

This is an important and well studied model in Time Series and Signal Processing litera-
ture. See for example Stoica (1993) for an extensive list of references for different estimation
procudures. Hannan (1971, 1973), Walker (1969, 1971), Kundu (1993, 1995), Kundu and
Mitra (1995, 1996) also considered this or similar kind of model to study the asymptotic prop-
erties of the different estimators and some of the computational issues have been discussed in
Rice and Rosenblatt (1988). Walker (1971) considered the approximate least squares estima-
tors (ALSE’s) and proved the strong consistency and the asymptotic normaliy of the ALSE’s
under the assumptions that the errors are i.i.d. random variables with mean zero and finite
variance. The result has been extended by Hannan (1971, 1973) to the case when the errors
are stationary random variables with continuous spectrum. Kundu (1993) also considered a
similar model and proved directly the consistency and the asymptotic normality of the LSE’s
under the assumption that X(t)’s are i.i.d. with mean zero and finite variance and they are
normally distributed. The result was extended to the case of general mean zero and finite
variance i.i.d. errors in Kundu and Mitra (1996). In this paper we generalize the result of
Kundu and Mitra (1996) to the case when the errors are coming from a mean zero and finite
variance stationary process. We prove directly the consistency and the asymptotic normality
of the LSE’s when the X(t)’s satisfy Assumption 1. It is important to observe that we do
not need the continuity assumption of the spectrum. Our approach is straight forward and
different from that of Walker (1969, 1971) or Hannan (1971, 1973). Hannan (1971, 1973)
obtained the result for the one parameter case after making the Fourier transform of the
data. We observe that it is not necessary to make the Fourier transform of the data. We
also consider the multiparameter case and obtained the explicit expression of the asymptotic
covariance matrix, which is not available in the literature. We also perform some numerical
experiments to compare the small sample behavior of the ALSE’s and the exact LSE’s. In
this paper the almost sure convergence means with respect to the usual Lebesgue measure




and it will be denoted by a.s.. Also the notation a = O(N°®) means is bounded for all

N.

a
Nb

The rest of the paper is organised as follows, in Section 2 we prove the consistency of
the LSE’s and establish the asymptotic normality results in Section 3. The results for the
several Harmonic case are obtained in Section 4. Some numerical results are presented in
Section 5 and finally we draw conclusions in Section 6.

2 Consistency of the LSE’s

Let’s denote fy = (AN, By, @) to be the LSE of 6 = (Ag, By, wo), obtained by minimizing

Z — Acos(wt) — Bsin(wt))? (3)

with respect to 8 = (A, B,w). It isimportant to observe that the existence and the uniqueness
of a respective measurable function satisfying (3) follows along the same line of Jennrich
(1969). To prove the consistency results we need the following lemma.

Lemma 1: Let X(t) be a stationary sequence which satisfies Assumption 1, then

lim sup =0 as. (4)

N-ooo [/]

N
Z—:1 X (t)cos(t6)

Before giving the proof in details, we would like to give a sketch of the main idea. First we
show that (4) holds for the subsequence N*. Then we show that

N
Z\’ cost@—flzZX t)cos(t6) (5)

t=1

sup sup
0 N3<k<(N+1)3 | N

converges to zero a.s. as N tends to co.

Proof of Lemma 1:

-jlvgle(t cos(t6) %ﬁ;]i e(t — j)cos(td) =

%5’5 55 alj)ele = Heos((t = )eos(ie) = sin((t = 0)sin(j0)} =
—jlvjﬁ:ooa(j)cos(je) é €t — j)cos((t —9)8) —

L5 a(i)sini0) 3 eft - f)sin((t - 7)) )

LY
I
|
3
o
i
L




Therefore

sup | 3 X (t)eos(26)] <

Nt:l
00 N
supl 3 ali)eos(it) Yo e(t - )eos((t -~ 6)] +
00 N
sup| 3 ali)sin(if) 3 et = sin((t =)0 e 0

We would like to prove that both the terms on the right hand side of (7) converges to zero
as N tends to infinity. Now observe that

1
0 N 2
{Esup|j—1/- > alf)cos(j8) D e(t — j)cos t—])9)|} <
0

j=—00 t=1
1

N 2
lax( {Esup Z (t — j)cos t—])g)]} <

z| -
M8

[o o] N 1
=Y o <>|{N+ S B[Sl )(m+t>|]a} ®)
j=-o00 t=—N+1

where the sum /7 _ ., omits the term t = 0 and the term £, is over N —|t| term (dependent
on j). Since

N N 1 3
Z E[|Zme(m)e(m + t)]] < Z E [|Zme(m)e(m + t)lz] ' =O(Nz) (9)
=-N+1 t=—N-+1
(uniformly in j) therefore (8) is O(N~%). Let M = N3. Therefore
00 N
Esuplor 3 alieos(i6) 3 cos((t - O = O~ (10)

Similarly the result is true if the cosine function is replaced by the sine also. Therefore

sup ZX Ycos(8) ‘ —0 a.s. (11)
when M = N3. Now
Ly LS X(t)cos(t6)
sup su — > X(t)cos(td) — —= ) X(t)cos(tl)| =
0 N3<K§(pN+1)3 Ni; Kt 1 (
1 N 1 X
sup  sup W > X (t)cos(t8) — — ZX cos(tf) +

8 N3<K<(N+1)3 =

—




1 X 1 K
]_VEZX( t)cos(tl) — X (t)cos(t0)|
t=1 t=1
] (VD (N+1)3
= 2 X+ Z [ - } (12)
N3 _ N3+l N+1

The mean squared of the first quantity on the right hand side of (12) is dominated by
£V +1)* = N*? = O(N~?). Similarly the mean squared of the second quantity on the

right hand side of (12) is dominated by K&z = O(N~?). Therefore both will converge to
zero almost surely, which proves the lemma

Corollary 1: The result is true if the cosine function is replaced by the sine function.

Corollary 2: It can be proved similarly that if X(t) is a sequence which satisfies Assumption
1, then

Jim sup | i f)cos(t) \ ~0 as. (13)
Now consider
< [@n(0) - Qn (@) =
%é {(¥(t) = Acos(wt) — Bsin(wt))” - X ()2} =
717 ;Nl (Agcos(wot) + Bosin(wot) — Acos(wt) — Bsin(wt))® +
% éX(t) (Agcos(wot) + Bosin(wot) — Acos(wt) — Bsin(wt)) =
fn(A, B,w) + gn(A, B, w) (14)

Now with the help of lemma 1, we can easily conclude that

lim sup gn(A,B,w)=0 a.s. (15)

N—o0 0656 M
where the set Sj 5 for 0 > 0, is as follows;

Ssmy = {(A B,w),|A- Aol > 6,|A| < M,|B| <M
or |B-Bo|>6|Al<M,|Bl<M

or |w—wo|>6,]A| < M,|B| < M} (16)
therefore for all § > 0,
e 1
M;?LN[QN( ) — Qn(6o)] = 11m oégépM fn(A,B,w) > 0. (17)




(17) follows easily from Kundu and Mitra (1996). Here lim means limit infimum. Now
suppose (Ay, By,wn) be the LSE’s of (Ao, Bo,ws) and they are not consistent. Therefore
either

Case I: For all subsequences {Nx} of {N}, |An,| + |Bn,| tends to infinity or

Case II: There exists a § > 0 and a M < oo and a subsequence { Nk } such that (leK, BNK,
L:JNK) 1S S&,M, forall K=1,2,...,.

Now ) )
QNK (ANKa BNKa‘:}NK) - QNK(A07 BO)WO) S 0 (18)

as (ANK, BNK,LDNK) is the LSE of (Ag, By, ws), when N = Ng. Observe that as K — oo, for
both the cases, the left hand side of (18) converges to a number which is strictly positive,
that is a contradiction. Therefore the LSE’s of the model (1) have to be strongly consistent.
Therefore we can state the following theorem:

Theorem 1 If Oy = (An,By,&n) is the LSE of the nonlinear regression model (1), then
it is a strongly consistent estimator of 6y = (Ao, Bo,wo).

3 Asymptotic Normality

In this section we prove the asymptotic normality of O by using the Taylor series expansion.

Let’s denote 5 o s 0 5 .

and Q% (6) to be the corresponding 3 x 3 matrix which contains the double derivative of
Qn(0). Therefore

Qn(On) = Q(6o) = (6~ 60)QN (D) (20)
where § = (A, B, ®) is a point in the line joining Oy and 6y. Observe that although 8 depends
on N, we omit it for brevity. Since Q'y(fn) = 0, (20) implies

(6 - 60) = Qi (60) [Qu(®)] (21)
Now
5Q§’A = —QZX cos(wot) (22)
5Q(’5VB9° =2 Z X (t)sin(wet) (23)
‘5ng9" = -2 Z tX (t)(Agsin(wot) — Bycos(wot)) (24)




Also

62QN(9—) N 2/ - 52QN
5 = 2§cos (@t), 352 ZZsm (wt),

62?52(9—) =2 i t2[(Agcos(wot) + Bysin(wot) — Acos(wt) — Bsin(wt) + X (t)) x
) (Acos(@t) + Bsin(wt)) + (Asin(@t) — Beos(wt))?] (25)
FONO) _ o5y . Lcos(it) — Bsin(a
Sl A = 2 ; t[sin(@t)(Aocos(wot) + Bpsin(wot) — Acos(@t) — Bszn(wt) + X(2)) -
cos(d)t)(/isin(u‘)t) — Beos(wt))) (26)
52(5?)1;(3) = -2 Z t[cos(@t)(Agcos(wot) + Bosin(wet) — Acos(@t) — Bsin(@t) + X (t)) —
sm(wt)(Aszn((Dt) — Beos(wt))) (27)
2Qne) &L _
SAsE = 2 Z:l sin(@t)cos(wt) (28)
Let’s define
al 1
on = lnréo — Z cos®(wot) = 3
tNl )
Oo9 = 1\1,51100 =Y sin®(wot) = 5

t=1

1
O33 = 11m — Z t* (Agsin(wot) — Bgcos(wot))2 = E(Ag + B?)
1
O13 = 031 = llm — Z Bytcos* (wet) = 4BO

1
O93 = O3 = — lm;o m z Agtsin®(wot) = —ZAO

N

1
012 = 09 = 1\}1—r>n — E sin(wot)cos(wot) = 0
t=1

Now observe that as @ — wp, A = Ap and B — By a.s., we have

N

1

légr;oﬁgcos (wt) —,\}1_',20_2(05 (wot) = =3 (29)
1

IJLI)I;ONZsm () —Jﬂo—Zszn (wot) = 5 (30)




1 62QN(5) ' 1 N 2f( 7 . /- 0 — 2
A o — = I}Enoo N3 ;t (Asm(wt) - Bcos(wt)) =
lim L iﬁ (Agsin(wot) — Bycos(wot))? = -1—(A2 + B2) (31)
Nesoo N3 0 0 0 0 6 0 0
1 62QN( ) R
Mmoo T = 1\}1—1;20 m ; tcos(wt) (Asm(wt) Bcos(wt)) =
1 1
A}I_I’Igo gl Z tB()COS (th) ZBO (32)
lim LM = — lim L itsin(u‘)t) (/isin(@t) - Bcos(wt)) =
N-oo 2N? SwéB N—oo N2 7~
1
- ll_xggo—N—z-ZtAosm (wot) = ——AO (33)
1 5°Qn(0) 2
am = N_wo I Zsm @t)cos(wt) =
2
Jim N ?:: sin(wot)cos(wot) = 0 (34)
Let’s define the 3 x 3 matrix ¥ = ((0y;)); i,j = 1,2,3 and also define the 3 x 3 diagonal matrix

D as follows D = diag { N™Y/2, N~1/2 N~ 3/2 }. Rewrite (21) as

1

(6 — 60)D™" = —Q}y (6)D [DQY (H)D]” (35)

Now from (29) - (34) we obtain

11m DQY(6)D = 11m DQ%\(6,)D = 2% (36)
where 3
Lo 1B,

~tAg A7+ BY) |

1
4 4
and £7! exists if (A3 + BZ) > 0 and it is as follows;

1A3+2B2 -3ABy, -3B, ]
- 4
-3B, 34, 6 |




Now from the Central Limit theorem of Stochastic Process (see Fuller; 1976) it easily follows
that Q' (6,)D tends to a multivariate (3-variate) normal distribution as given below;

Qv (80)D — N3(0,40%cE) (39)
where -
c=| 3 a(j)cos(wos)® +| Z () sin(woy)|?
j=—o0 j=—oo
Therefore we have; ) )
(9[\1 - eo)D_l — N3(0,O’2CZ_1) (40)

Now we can state the result as the following theorem;

Theorem 2 Under the assumptions of Theorem 1, {N% (/iN —Ay) N3 (BN — By), N%((IJN -
wp)} converges in distribution to a $-variate normal distribution with mean vector zero and
the dispersion matriz is given by 0% ¢ L7}, where ¢ and ™' are as defined before.

4 Multiparameter Case

In this section we will extend the results of Section 2 and Section 3 to the following model:
ZAKcos K1) + BEsin(wlt) + X(t); t=1,...,N, (41)

where AX, B are arbitrary real numbers and w{®’s are the distinct frquencies lying between
0 and 7 for K =1, ..., M. X(t)’s satisfy Assumption 1.

Let us use the following notations A = (A4',...,AM), B = (BY,...,BM) and w =

(W', ...,wM). Similarly Ag, By, wo and An, By and On are also defined. We would

like to investigate the consistency and the asymptotic normality properties of the LSE’s
obtained by minimizing Ry (®) =,

2

N M
Z( Z Kcos(w®t) + BX sin(w Kt)])

t=1 K=1

with respect to ® = (A, B,w). Now we have the following result:

~

Theorem 3 If &y = (Ay,By,&n) is the LSE of &g = (Ag,By,wy), then $y is a strongly
consistent estimator of ®.




Proof of Theorem 3: With the help of Lemma 1 and using the similar kind of techniques
as that of (Kundu and Mitra; 1995), the results can be established.

Let’s denote the 1 x 3M vector R} (®) as follows:

R (@) = <(5RN(<I>) 5Ry(®) 6RN(<I>)>

A 7 B 7 bw

and R} (®) denotes the 3M x 3M matrix which contains the double derivative of Ry(®).
Now we have

Ry(®n) — Ry(®0) = (&n — o) Ry () (42)
where ® = (A, B, ®) is a point in the line joining dy and ®,. Since R’N(<i>N) = 0, we have

(bn — @0) = —Riy(@0) [Riy(®)] (43)

Let’s define the 3M x 3M diagonal matrix V whose first 2M diagonal elements are N -3 and
. 3 "
the last M diagonal elements are N~2. Therefore we can write (43) as

(bn — ®)V™" = —Ry (@) V" [V RE(@)V]|™
Now using the similar kind of arguments as of Section 3, we can say that
R,N((D())V — N3M(0,40'2G)

where G is a 3M x 3M matrix and it has the following structure

G’ll G’l2 G13

G=| Gz Ga2 G2 (44)

| Ga1 G32 Gas

where each of the Gy; is a M x M matrix and

1 1
G11 = Gzz =diag{§cl,...,—cM}

2
. 1 1 1 M
G13 = G31 = rlzag {4—3001,.. .,EBO CM}
1
G23 = G32 = —(ﬁag{z]i-A(l)Cl,...,é-Ag/[CM}

1
G33 = édza(] {dl, ey dM}
Gz = 0. (45)

10




here cx =

| 2= a(s)cos(w lz+i2

Jsin(wy §)|*

j=—o Jj=—00

and dg = cx [(Aé{)2 + (Bé()?] for K =1, ..., M. Observe that

Jim VR{(3)V = lim VR}(®o)V = 2T

here the 3M x 3M matrix I is

v 0
T=| 0 iy
S1 S

S1
S2
Ss

where S;,S2,S3 are M x M diagonal matrices as follows;

1.
S, = Zdzag{Bé,...,Bé”}
1.
S, = —Zdzag{A(l),.‘.,Ag'[}
1
| S3 = gdiag{dl,...,dM}
i and Iy is the identity matrix of order M. Since
1 1R, + 2R, R, Rs
rt=4 R, iR; +2Rs Rs
Rs Rs Re
where
112 M2
R; = diag (Bo) ,.”’LBiO__l_
(11 dM
3 AlBl AM M
R, = —°d& 080 Ao Do
2 2‘1’“"{ d 7 dy }
_ _[B; By
R3 = —3dzag{d—,...,:i—;
M2
R, = dtag{( ),...,————-(AO) }
dum
Al AM
Rs = 3d =
o = sdiog{ %R,
1 1
RG = Gdl(l_]{dl ,E;I'}
we have

(50)

(&x = Do)V~ = Ny (0,0°T7'GT)

therefore we can state the result as the following theorem;

11




Theorem 4 Under the assumptions of Theorem 8, {N% (AN—AO) ,N%(EN—BO), N%(LDN“*
wo)} converges in distribution to a $M-variate normal distribution with mean vector zero and
the dispersion matriz is given by o?T~'GI~L.

5 Numerical Experiments

In this section we perform some Monte Carlo simulations to see how the asymptotic results
work for small sample. We considered the following model:

Y (t) = Agcos(wot) + Bysin(wot) + X (t); t=1,...,N. (51)

We took Ay = By = 1.5, wp = .25 7 (= 0.735398), .50 7 (=~ 1.570796) and .75 7 (= 2.356194).
X(t) = €(t) + .5¢(t-1), where €(t)’s are i.i.d. normal random variables with mean zero and
variance one. Numerical results are reported for N = 10, 15, 25. All these computations
were performed at the Indian Instituet of Technology Kanpur, using PC-486 and the random
deviate generator proposed by Press et al. (1992). For a particular N and w, 1000 different
data sets were generated and for each data set we estimated the nonlinear parameters by
two different methods, one (denoted by L.S.) by directly minimizing (3) with respect to
the different parameters and the other one (denoted by A.L.S.) by first making the Fourier
transform of the data as suggested by Hannan (1971, 1973), Walker (1971). We computed the
average estimates and the average mean squared errors over 1000 replications. We reported
the result in Table 1 for the frequency only because the others are quite similar in nature.
The figures in the top denote the average estimates and the figures in the parenthesis below
give the corresponding averge mean squared errors. We also computed the 95% confidence
interval for w for each data sets. The results are reported in Table 2. The first figure in
the parenthesis is the average length of the confidence interval and the second figure is the
coverage frequency over 1000 replications. From Table 1 and Table 2, it is clear that although
asymptotically both the methods are same but for small sample it is observed that the exact
LSE’s are better than the ALSE’s. The average mecan squared errors of w are lower for the
usual LSE’s for almost all the sample sizes and for all w’s. About the confidence intervals,
it is observed that for higher values of w, the confidence interval of w obtained by using the
exact LSE’s usually give higher coverage probability. It is also observed that for both the
methods as N increases the average length decreases and the coverage probability increases.

6 Conclusions

~

In this paper we considered the one parameter and multiparameter sinusoidal model under
the assumption of additive stationary errors. We obtained the asymptotic properties of the

12




LSE’s directly without making the Fourier transform of the data. We also obtained the ex-
plicit expression of the covariance matrix for the multiparameter case, which is not available
in the literature. From the numerical study it is observed that although asymptotically the
two mehtods are equivalent but the exact LSE’s are better than the ALSE’s in terms of
the mean squared errors. Since both the methods require the same amount of computaions,
therefore it is recommended not to Fourier transform the data at least for small samples to
make any finite sample inference from the asymptotic results.
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Table 1

w N = 10 N=15 N =25

LS. ALS | LS ALS. | LS ALS.
257 | 7093 6949 | 7525 .7190 | .7871 .7794
(.1314) (.1367) | (.0287) (.0539) | (.0078) (.0139)
507 | 1.3402 1.2555 | 1.4371 1.4543 | 1.4749  1.4497
(.3387) (.5072) | (.1287) (.1467) | (.0975) (.1436)
757 | 17772 1.6292 | 2.1143  2.0450 | 2.2501  2.1875
(1.060) (1.426) | (.4455) (.6202) | (.1987) (.3637)

Table 2

w N = 10 N =15 N =25

LS. ALS. LS ALS LS. ALS.
257 | (.24, 46) (.24, .41) | (.25, .73), (.15, .53) | (.15, .88), (.09, .81)
507 | (.31, 53) (.21, .42) | (.29, .78), (.19, .71) | (.16, .87), (.10, .73)
757 | (.35, 62) (.37, .49) | (.32, .86), (.21, .80) | (.17, .94), (.11, .86)
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